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THE LICENSE 

Copyright © 2013 Jarmo Nikkanen 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation (the 

"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, 

distribute, sublicense, and/or sell copies of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 

THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN THE SOFTWARE. 

 

 

 

FOREWORD 

This document is created in a hope that it might give some ideas on how to compute 2-based exponentials and logarithms. Source 

codes are provided because some people can read code better than a mathematical descriptions. Remember that the codes are 

provided to clarify the idea, NOT to provide a well working solution. Source codes are missing rounding of the result, special case 

handling and additional shifts to improve precision.  
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FLOATING POINT 

A single precision floating-point number is made from 23-bit Mantissa, 8-bit Exponent and a sign bit. There is also an implicit bit that 

isn’t present in a floating point number itself but is often added during a bit manipulations. (i.e. 0x800000) 

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

𝑥 =  (1 +
𝑀

223) ∗ 2𝐸−127 

Value 1.0 can be archived by setting the mantissa bits to zero and exponent to 127 (that is zero due to exponent bias). If all mantissa 

bits are set to one then the resulting value is 1.999… that is 2.0-epsilon. You can’t actually reach a zero with a floating point format, 

but a special floating point zero is defined by setting mantissa and exponent to zero. Also note that multiplication and division with 

powers of two such as (2, 4, 8, 16…) can be completed by adjusting the exponent 𝐸. 

FLOAT-INTEGER CONVERSION 

Integer can be converted to a floating point number by finding the index 𝑛 of the highest active bit and setting the bit to zero and 

then shifting resulting value by 23 − 𝑛 bits to left or right based on polarity. After that a value 127 + 𝑛 will be written to the 

exponent 𝐸. Floating point number can be converted to an integer by shifting the mantissa 𝐸 − 23 − 127 bits, where 𝐸 is the biased 

value of the exponent. Shifting is done to left or right based on polarity. 

 

 

BASICS OF EXPONENTIALS AND LOGARITHMS 

Logarithms may seem to be less important in general computations but they do provide a way to compute several other more 

important functions like:  𝑥𝑦 = 2(𝑦 log2 𝑥) , √𝑥 = 2(0.5 log2 𝑥) , 𝑦 𝑥⁄ = 2(log2 𝑦−log2 𝑥) , 1 𝑥⁄ = 2(− log2 𝑥) . Also note that  𝑒𝑥 = 2𝑧𝑥 , 

where  𝑧 = 1/ ln 2. These may prove useful when working with mathematics in a highly limited environment. But note that a 

logarithm doesn’t take negative input value.  

Computation of exponentials and logarithms will rely on a basic identity: 𝑒(𝑎+𝑏) = 𝑒𝑎𝑒𝑏  and ln(𝑎𝑏) = ln 𝑎 + ln 𝑏 . For an 

example 211 = 2(8+2+1) = 28 ∙ 22 ∙ 21 = 2048.  Computation process for an exponential is pretty simple. First, initialize a value 1.0 

into a result accumulator. Then, as long as the source (input) value 𝑠 is non-zero. Subtract a known constant 𝑐[𝑖] from the 𝑠 and 

multiply the result accumulator with 2𝑐[𝑖]. If you choose the constants 𝑐[𝑖] properly then the subtraction will get simplified to bit 

checking and with some other values of 𝑐[𝑖] the multiplication will become a bit shifting.  

int Float2Int(float iv) 

{ 

    DWORD m = Mantissa(iv) | 0x800000; 

    int   e = Exponent(iv); if (e<0) return 0; 

    int   r = Shift(m, e-23); if (iv<0) r=-r; 

    return r; 

} 

float Int2Float(int iv) 

{  

    DWORD a = abs(iv); 

    if (a==0) return 0.0f; 

    DWORD n = HighestBitZero(&a); 

    return CreateFloat(Shift(a, 23-n), n, iv<0); 

} 
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2-BASED EXPONENTIAL FUNCTION 

This section will describe a method to compute a 2-based exponential function 𝑦 = 2𝑥, where the 𝑥 is a floating point number. We 

could compute 𝑒-based exponential directly but a 2-based allows us to take a better advantage of the floating point format. In order 

to proceed with the computations we need a table for multiplications. The table contains 2x23 values, two values for each bit in the 

mantissa. Values for a bits 15-22 are shown in a table below.  

Index Bit weight fMul iMul 

𝑏 𝑤 = 1 223−𝑏⁄  𝑚 = 2𝑤 𝑖 = 1 2𝑤⁄  
22 0.5000000 1.4142135 0.7071068 

21 0.2500000 1.1892071 0.8408964 

20 0.1250000 1.0905077 0.9170040 

19 0.0625000 1.0442737 0.9576033 

18 0.0312500 1.0218972 0.9785720 

17 0.0156250 1.0108893 0.9892280 

16 0.0078125 1.0054299 0.9945995 

15 0.0039063 1.0027113 0.9972960 

… … … … 

 

Let’s use a value 9.890625 in our example case. Value has a mantissa of 0x1E4000 and unbiased exponent +3. Below is the bit field 

of the mantissa. The left most bit is the implicit bit added to the value. 

1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

At first we have to shift the bits to the left by three because the exponent is +3. While doing this, three bits from the mantissa will be 

shifted to the integer (whole number) part of a fixed point value (bits 23-29). (The implicit bit is already there). If the exponent is 

negative then the shifting would be done to right and the implicit bit would be shifted into the fractional part. 

w   

6
4

 

3
2

 

1
6

 

8
 

4
 

2
 

1
 

,5
0

0
 

,2
5

0
 

,1
2

5
 

,0
6

3
 

,0
3

1
 

,0
1

6
 

                 

 x x 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
b 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

When computing the value of the exponential we have to compute the product of the multipliers of each active bit. Then we multiply 

the result with 29 = 2821 = 512, because the integer part is +9. But since we are working with a floating point numbers the integer 

part +9 can be simply added to the exponent 𝐸 of the final result. Of course, we could have the multipliers for bits 23-29 in the table 

but that would be inefficient due to unnecessary multiplications. Positive values are using fMul table and negative values iMul table. 

Just fetch a multiplier from the table using index of each active bit in a fixed point fraction. Here’s an example: 

2+9.890625
 = (fMul[22]*fMul[21]*fMul[20]*fMul[17]) * 512 = 949,237312 

2−9.890625
 = (iMul[22]*iMul[21]*iMul[20]*iMul[17]) * 1/512 = 0,001053477 

 
The algorithm above is simplified to work only with positive input values [0-127].  

  

float Exp2(float iv) 

{ 

 DWORD m  = Mantissa(iv) | 0x800000; 

 int   e  = Exponent(iv);  

 DWORD b  = Shift(m, e); // Shift bits to left or right based on polarity 

 float rv = 1.0f; 

  

for (int i=0;i<23;i++) { // Perform a multiplication for each active bit in a fixed point fraction 

     if (b&1) rv *= fMul[i]; b>>=1; 

 } 

 

 DWORD *d = (DWORD*)&rv; 

 if (e>=0) *d += (m>>(23-e))<<23; // Add the integer part to the exponent 

 return rv; 

} 
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2-BASED EXPONENTIAL FUNCTION WITHOUT MULTIPLICATION 

The method described in a previous section could be good one if you have a fast 

hardware multiplier available, otherwise the multiplication might become a 

problem. There is a way to avoid the multiplication. As you probably already 

know that a multiplication or a division with a powers of two can be completed 

by shifting the bits. So, we could try to approach the problem from the opposite 

direction by trying to find the multipliers those will allow us to do the 

multiplication easily. One multiplier that fits in our needs is [1 + 1 2𝑛⁄ ]. If we 

want to multiply a value x with this multiplier then we can do it by shifting the 

bits: x = x + (x>>n); But in that case we need a table of corresponding subtraction 

values. We can’t use this multiplier in a per bit basis as we did in the previous 

section. The subtraction values can be computed by taking a base-2 logarithm from the multiplier. The first eight values are shown 

in a table right here. Upper 8-bits of dwSub are unused in this example, it would be a good idea to put them in a good use. 

 

The code above is simplified to use only a positive values. Also, you may need to adjust the fixed point by bit shifting to reduce a 

round-off error accumulation. These shifts are removed from the code as well as rounding of the result. To compute the exponential 

using a negative input value you need to use [1 − 1 2𝑛⁄ ] multiplier instead of [1 + 1 2𝑛⁄ ]. See the 2-based logarithm section for some 

additional details. 

 

 

  

Index Multiplier fSub dwSub 

𝑛 𝑚 = 1 + 1 2𝑛⁄  𝑠 = log2 𝑚  

0 2.0000000 1.0000000 0x800000 

1 1.5000000 0.5849625 0x4AE00D 

2 1.2500000 0.3219281 0x2934F0 

3 1.1250000 0.1699250 0x15C01A 

4 1.0625000 0.0874628 0x0B31FB 

5 1.0312500 0.0443941 0x05AEB4 

6 1.0156250 0.0223678 0x02DCF2 

7 1.0078125 0.0112273 0x016FE5 

… … … … 

float Exp2(float iv) 

{ 

 int   i = 1; 

 int   e = Exponent(iv);  

 DWORD m = Mantissa(iv) | 0x800000; 

 DWORD b = Shift(m, e) & 0x7FFFFF; // Shift bits to left or right based on polarity 

 DWORD v = 0x800000;          // Initial starting value 

  

 while (i<23) { 

    if (b>=dwSub[i]) { 

        b-=dwSub[i]; 

        v = v + (v>>i); 

    } else i++; 

 } 

 

 v &= 0x7FFFFF;       // Form a floating point number. Remove implict bit. 

 v += 127<<23;          // Initialize exponent 

 if (e>=0) v += (m>>(23-e))<<23;  // Compute the exponent and add it to the float 

 return *(float*)&v;    // Convert dword to float 

} 
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2-BASED LOGARITHMIC FUNCTION 

The computation process of 2-based logarithm is pretty much the opposite 

than with the exponential. As long as the source (input) value is greater than 

1.0. The input value is divided by a known constant (as large as possible but 

less than the source value) and then a 2-based logarithm of the constant is 

added to the output value. Each division of the source value will make it to 

approach 1.0. In this example case adding of log2 𝑐[𝑖] is simplified to a bit 

setting. Here is a table containing a divisor and it’s inverse. The values are 

the same as in the first section. We could have a longer table containing a 

divisors for bits 23-31 but it would be a waste. Instead, we can simply divide 

the input value with 2𝐸 in other words setting the exponent 𝐸 to 127 from 

the source value (that is zero due to exponent bias). That will scale the input value in range [1-2[. Then we have to add the original 

value of the exponent into the final result. The exponent 𝐸 of the input value itself is the integer (whole number) part of the final 

result. In the code below we subtract 1 from the ‘e’, because the implicit bit is added to the float returned by CreateFloat(). 

 

 

2-BASED LOGARITHM WITHOUT MULTIPLICATION 

This section will describe another method using a bit shifting instead of floating point multiplication. The principles are exactly the 

same as described in an earlier sections. Also the table that is used here is 

exactly the same as the one required by negative values earlier. It doesn’t really 

matter what value is used in a division/multiplication as long as the source value 

approaches 1.0 in every step and the relationship between the divisor and the 

value being added is correct. Also, note that you may need to use the same 

divisor/multiplier more than once. For an example: if the input value is 1.9 you 

need to multiply it twice with 0.75. That is why the i++ is in the ‘else’ statement. 

 

 

  

Index Bit weight fDiv iDiv 

𝑏 𝑤 = 1 223−𝑏⁄  𝑚 = 2𝑤 𝑖 = 1 2𝑤⁄  
22 0.5000000 1.4142135 0.7071068 

21 0.2500000 1.1892071 0.8408964 

20 0.1250000 1.0905077 0.9170040 

19 0.0625000 1.0442737 0.9576033 

18 0.0312500 1.0218972 0.9785720 

17 0.0156250 1.0108893 0.9892280 

16 0.0078125 1.0054299 0.9945995 

15 0.0039063 1.0027113 0.9972960 

… … … … 

Index Multiplier fAdd dwAdd 

𝑛 𝑚 = 1 − 1 2𝑛⁄  |log2 𝑚|  

1 0.5000000 1.0000000 0x800000 

2 0.7500000 0.4150375 0x351FF3 

3 0.8750000 0.1926451 0x18A898 

4 0.9375000 0.0931094 0x0BEB02 

5 0.9687500 0.0458037 0x05DCE5 

6 0.9843750 0.0227201 0x02E87D 

7 0.9921875 0.0113153 0x0172C7 

8 0.9960938 0.0056466 0x00B906 

… … … … 

float Log2(float iv) 

{ 

DWORD a  = 0; 

 int   e  = Exponent(iv); 

 SetExponent(&iv,0);   // Set exponent to zero (i.e. scale input range to [1-2[) 

 for (int i=22;i>=1;i--) { 

     if (iv>=fDiv[i]) iv*=iDiv[i], a|=1;  // Divide and set lowest bit 

     a<<=1;     // Shift the bits 

 } 

 return Int2Float(e-1) + CreateFloat(a); 

} 

float Log2(float iv) 

{ 

 DWORD lg = 0; 

 int   i  = 2; 

int   m  = Mantissa(iv) | 0x800000; 

 while (i<23) { 

     int t = m - (m>>i); 

     if (t>0x800000) { 

         m = t; 

         lg += dwAdd[i]; // Table index 0 is unused 

     } else i++; 

 } 

 return Int2Float(Exponent(iv)-1) + CreateFloat(lg); 

} 
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2-BASED LOGARITHM WITHOUT TABLE 

If we look at the function we developed in the section 2-based logarithmic function. We can notice that the actual computation is 

pretty simple since the fDiv[i] = √2
𝑥

, where  𝑥 = 2𝑖. 

𝑖𝑓 (𝑣 ≥ √2
𝑥

) 𝑡ℎ𝑒𝑛 𝑣 = 𝑣 √2
𝑥

⁄  

We are compering 𝑣 to the 𝑥:th root of 2. Then, why not raise both sides of the “statement” to power of 𝑥, resulting following 
statement below. This can be easily archived by squaring the input value 𝑣 each step in a loop. Also remember that division by two 
can be completed by decrementing the exponent 𝐸. 

𝑖𝑓 (𝑣𝑥 ≥ 2) 𝑡ℎ𝑒𝑛 𝑣𝑥 = 𝑣𝑥 2⁄  

 

2-BASED EXPONENTIAL WITHOUT TABLE 

Computation of 2-based exponential without a table is pretty easy. We can simply replace the table by taking a square root from a 

previous root in a loop.  But doing so would be mathematically expensive. Therefore, it’s not much an option. 

  
In theory, it would be possible to take the n:th root of the lowest bit and start squaring it up, but the value is so close to 1.0 that a 

computer doesn’t really make a difference between the two. There isn’t enough precision to do the squaring without doubling the 

bits in the mantissa. The code below will show the idea. 

How about splitting the value 1.0000000826295864 into a two different values 1.0 and 8.26295864e-8. You probably recall from the 

school that (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2. This will work in our favor. In our case the variable 𝑎 would be 1.0 and that will simplify the 

equation to (1 + 𝑏)2 = 1 + 2𝑏 + 𝑏2. Also we don’t want to compute the square, instead we want the next 𝑏𝑛+1 which is given by 

following equation below. Last two underlined forms are usable. 

𝑏𝑛+1 = (1 + 𝑏𝑛)2 − 1 = (1 + 2𝑏𝑛 + 𝑏𝑛
2) − 1 = 2𝑏𝑛 + 𝑏𝑛

2 = 𝑏𝑛(2 + 𝑏𝑛) 

 

float Log2(float iv) 

{ 

DWORD a  = 0; 

 int   e  = Exponent(iv); 

 SetExponent(&iv,0);   // Set exponent to zero (i.e. scale input range to [1-2]) 

 for (int i=22;i>=1;i--) { 

     iv*=iv; 

    if (iv>=2.0f) iv*=0.5f, a|=1; // Set lowest bit 

     a<<=1;    // Shift the bits 

 } 

 return Int2Float(e-1) + CreateFloat(a); 

} 

float sq = 2.0f; 

for (int i=0;i<23;i++) { 

    sq=sqrt(sq);   // Take a square root 

    if (b&0x400000) rv *= sq;  // Perform a multiplication for each active bit in a fixed point fraction 

    b<<=1;       // Shift the bits 

} 

 
 

float sq = 1.0000000826295864; // 2^23:th root of 2  

for (int i=0;i<23;i++) { 

    if (b&1) rv *= sq;  // Perform a multiplication for each active bit in a fixed point fraction 

    b>>=1;   // Shift the bits 

    sq*=sq;   // Square it up 

} 

 
 

float Exp2(float iv) 

{ 

 DWORD m  = Mantissa(iv) | 0x800000; 

 int   e  = Exponent(iv);  

 DWORD b  = Shift(m, e);  // Shift bits to left or right based on polarity 

 float rv = 1.0f;  

 float sq = 8.26295864e-8f; // (2^23:th root of 2) minus 1.0 

  

 for (int i=0;i<23;i++) {   

     if (b&1) rv *= (1.0f + sq); // Perform a multiplication for each active bit 

     sq *= (2.0f+sq);  // Square it up 

     b>>=1;   // Shift the bits 

 } 

 DWORD *d = (DWORD*)&rv; 

 if (e>=0) *d += (m>>(23-e))<<23; // Add the integer part to the exponent 

 return rv; 

} 



7 
 

SOME BASIC ALGORITHMS 

 

 

 

int Exponent(float f) 

{ 

 DWORD *d = (DWORD*)&f; 

 int    e = (*d>>23)&0xFF; 

 return e - 127; // Return signed unbiased exponent 

} 

 

DWORD Mantissa(float f) 

{ 

 DWORD *d = (DWORD*)&f;  

return *d&0x7FFFFF; 

} 

 

bool Sign(float f) 

{ 

 DWORD *d = (DWORD*)&f;  

return ((*d&0x80000000)!=0); 

} 

 

float CreateFloat(DWORD m, int e, bool s) 

{ 

 DWORD d = (m&0x7FFFFF) + ((e+127)<<23);  

 if (s) d |= 0x80000000; // Add a sign bit 

 return *(float*)&d; 

} 

 

float CreateFloat(DWORD m) 

{ 

 DWORD d = (m&0x7FFFFF) + (127<<23);  

 return *(float*)&d; 

} 

 

void SetExponent(float *f, int e) 

{ 

 *f = CreateFloat(Mantissa(*f), e, Sign(*f));  

} 

 

DWORD Shift(DWORD w, int d) 

{ 

 if (d<0) return w>>(-d); 

 return w<<d; 

} 

DWORD HighestBitZero(DWORD *x) 

{ 

 for (int i=0;i<32;i++) { 

     DWORD q = 0x80000000>>i; 

     if (*x&q) { *x-=q; return 31-i; } 

 } 

 return 0; 

} 


